MakeItFrom.com
Menu (ESC)

A384.0 Aluminum vs. SAE-AISI 1055 Steel

A384.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1055 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A384.0 aluminum and the bottom bar is SAE-AISI 1055 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
190
Elongation at Break, % 2.5
11 to 14
Fatigue Strength, MPa 140
260 to 390
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
72
Shear Strength, MPa 200
440 to 450
Tensile Strength: Ultimate (UTS), MPa 330
730 to 750
Tensile Strength: Yield (Proof), MPa 170
400 to 630

Thermal Properties

Latent Heat of Fusion, J/g 550
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 610
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 96
51
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
11
Electrical Conductivity: Equal Weight (Specific), % IACS 73
12

Otherwise Unclassified Properties

Base Metal Price, % relative 11
1.8
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.5
1.4
Embodied Energy, MJ/kg 140
18
Embodied Water, L/kg 1010
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
80 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 180
440 to 1070
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 32
26
Strength to Weight: Bending, points 38
23
Thermal Diffusivity, mm2/s 39
14
Thermal Shock Resistance, points 15
23 to 24

Alloy Composition

Aluminum (Al), % 79.3 to 86.5
0
Carbon (C), % 0
0.5 to 0.6
Copper (Cu), % 3.0 to 4.5
0
Iron (Fe), % 0 to 1.3
98.4 to 98.9
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.6 to 0.9
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 10.5 to 12
0
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0 to 0.35
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0