MakeItFrom.com
Menu (ESC)

A384.0 Aluminum vs. SAE-AISI O1 Steel

A384.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI O1 steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A384.0 aluminum and the bottom bar is SAE-AISI O1 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
72
Tensile Strength: Ultimate (UTS), MPa 330
640 to 2060

Thermal Properties

Latent Heat of Fusion, J/g 550
250
Melting Completion (Liquidus), °C 610
1460
Melting Onset (Solidus), °C 510
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 96
43
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 73
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
3.4
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.5
1.9
Embodied Energy, MJ/kg 140
27
Embodied Water, L/kg 1010
51

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 32
23 to 73
Strength to Weight: Bending, points 38
21 to 46
Thermal Diffusivity, mm2/s 39
12
Thermal Shock Resistance, points 15
21 to 68

Alloy Composition

Aluminum (Al), % 79.3 to 86.5
0
Carbon (C), % 0
0.85 to 1.0
Chromium (Cr), % 0
0.4 to 0.6
Copper (Cu), % 3.0 to 4.5
0 to 0.25
Iron (Fe), % 0 to 1.3
95 to 97.4
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
1.0 to 1.4
Nickel (Ni), % 0 to 0.5
0 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 10.5 to 12
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.35
0
Tungsten (W), % 0
0.4 to 0.6
Vanadium (V), % 0
0 to 0.3
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0