MakeItFrom.com
Menu (ESC)

A384.0 Aluminum vs. S44535 Stainless Steel

A384.0 aluminum belongs to the aluminum alloys classification, while S44535 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A384.0 aluminum and the bottom bar is S44535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 74
200
Elongation at Break, % 2.5
28
Fatigue Strength, MPa 140
210
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 28
78
Shear Strength, MPa 200
290
Tensile Strength: Ultimate (UTS), MPa 330
450
Tensile Strength: Yield (Proof), MPa 170
290

Thermal Properties

Latent Heat of Fusion, J/g 550
290
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 610
1430
Melting Onset (Solidus), °C 510
1390
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 96
21
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 73
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 11
11
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 7.5
2.4
Embodied Energy, MJ/kg 140
34
Embodied Water, L/kg 1010
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.9
110
Resilience: Unit (Modulus of Resilience), kJ/m3 180
200
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 32
16
Strength to Weight: Bending, points 38
17
Thermal Diffusivity, mm2/s 39
5.6
Thermal Shock Resistance, points 15
15

Alloy Composition

Aluminum (Al), % 79.3 to 86.5
0 to 0.5
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 3.0 to 4.5
0 to 0.5
Iron (Fe), % 0 to 1.3
73.2 to 79.6
Lanthanum (La), % 0
0.040 to 0.2
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0.3 to 0.8
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 10.5 to 12
0 to 0.5
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.35
0
Titanium (Ti), % 0
0.030 to 0.2
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0