MakeItFrom.com
Menu (ESC)

A390.0 Aluminum vs. ASTM A182 Grade F10

A390.0 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F10 belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A390.0 aluminum and the bottom bar is ASTM A182 grade F10.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 140
190
Elastic (Young's, Tensile) Modulus, GPa 75
190
Elongation at Break, % 0.87 to 0.91
34
Fatigue Strength, MPa 70 to 100
180
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
74
Tensile Strength: Ultimate (UTS), MPa 190 to 290
630
Tensile Strength: Yield (Proof), MPa 190 to 290
230

Thermal Properties

Latent Heat of Fusion, J/g 640
290
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 580
1420
Melting Onset (Solidus), °C 480
1370
Specific Heat Capacity, J/kg-K 880
470
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
15
Electrical Conductivity: Equal Weight (Specific), % IACS 67
17

Otherwise Unclassified Properties

Base Metal Price, % relative 11
18
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 7.3
3.6
Embodied Energy, MJ/kg 140
51
Embodied Water, L/kg 950
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 2.6
170
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 580
140
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 19 to 30
22
Strength to Weight: Bending, points 27 to 36
21
Thermal Shock Resistance, points 9.0 to 14
18

Alloy Composition

Aluminum (Al), % 75.3 to 79.6
0
Carbon (C), % 0
0.1 to 0.2
Chromium (Cr), % 0
7.0 to 9.0
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 0.5
66.5 to 72.4
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0.5 to 0.8
Nickel (Ni), % 0
19 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 16 to 18
1.0 to 1.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0