MakeItFrom.com
Menu (ESC)

A390.0 Aluminum vs. EN 1.4411 Stainless Steel

A390.0 aluminum belongs to the aluminum alloys classification, while EN 1.4411 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A390.0 aluminum and the bottom bar is EN 1.4411 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
200
Elongation at Break, % 0.87 to 0.91
17
Fatigue Strength, MPa 70 to 100
370
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
78
Tensile Strength: Ultimate (UTS), MPa 190 to 290
870
Tensile Strength: Yield (Proof), MPa 190 to 290
600

Thermal Properties

Latent Heat of Fusion, J/g 640
280
Maximum Temperature: Mechanical, °C 170
880
Melting Completion (Liquidus), °C 580
1450
Melting Onset (Solidus), °C 480
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
17
Thermal Expansion, µm/m-K 20
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 67
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 11
13
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.3
3.0
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 950
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 2.6
130
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 580
920
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 19 to 30
31
Strength to Weight: Bending, points 27 to 36
26
Thermal Diffusivity, mm2/s 56
4.6
Thermal Shock Resistance, points 9.0 to 14
28

Alloy Composition

Aluminum (Al), % 75.3 to 79.6
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
15 to 17
Copper (Cu), % 4.0 to 5.0
0
Iron (Fe), % 0 to 0.5
73.1 to 79.5
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0 to 1.0
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0
4.0 to 6.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 16 to 18
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0