MakeItFrom.com
Menu (ESC)

A390.0 Aluminum vs. EN 1.4659 Stainless Steel

A390.0 aluminum belongs to the aluminum alloys classification, while EN 1.4659 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A390.0 aluminum and the bottom bar is EN 1.4659 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 140
260
Elastic (Young's, Tensile) Modulus, GPa 75
210
Elongation at Break, % 0.87 to 0.91
49
Fatigue Strength, MPa 70 to 100
460
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
81
Tensile Strength: Ultimate (UTS), MPa 190 to 290
900
Tensile Strength: Yield (Proof), MPa 190 to 290
480

Thermal Properties

Latent Heat of Fusion, J/g 640
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 580
1480
Melting Onset (Solidus), °C 480
1430
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 130
12
Thermal Expansion, µm/m-K 20
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 67
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 11
37
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 7.3
6.5
Embodied Energy, MJ/kg 140
89
Embodied Water, L/kg 950
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 2.6
370
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 580
550
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 19 to 30
31
Strength to Weight: Bending, points 27 to 36
25
Thermal Diffusivity, mm2/s 56
3.2
Thermal Shock Resistance, points 9.0 to 14
19

Alloy Composition

Aluminum (Al), % 75.3 to 79.6
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 4.0 to 5.0
1.0 to 2.0
Iron (Fe), % 0 to 0.5
35.7 to 45.7
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
2.0 to 4.0
Molybdenum (Mo), % 0
5.5 to 6.5
Nickel (Ni), % 0
21 to 23
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 16 to 18
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
1.5 to 2.5
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0