MakeItFrom.com
Menu (ESC)

A390.0 Aluminum vs. EN 1.6553 Steel

A390.0 aluminum belongs to the aluminum alloys classification, while EN 1.6553 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A390.0 aluminum and the bottom bar is EN 1.6553 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 140
210 to 240
Elastic (Young's, Tensile) Modulus, GPa 75
190
Elongation at Break, % 0.87 to 0.91
19 to 21
Fatigue Strength, MPa 70 to 100
330 to 460
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Tensile Strength: Ultimate (UTS), MPa 190 to 290
710 to 800
Tensile Strength: Yield (Proof), MPa 190 to 290
470 to 670

Thermal Properties

Latent Heat of Fusion, J/g 640
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 580
1460
Melting Onset (Solidus), °C 480
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 130
39
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 67
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.7
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.3
1.6
Embodied Energy, MJ/kg 140
21
Embodied Water, L/kg 950
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 2.6
130 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 580
600 to 1190
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 19 to 30
25 to 28
Strength to Weight: Bending, points 27 to 36
23 to 24
Thermal Diffusivity, mm2/s 56
10
Thermal Shock Resistance, points 9.0 to 14
21 to 23

Alloy Composition

Aluminum (Al), % 75.3 to 79.6
0
Carbon (C), % 0
0.23 to 0.28
Chromium (Cr), % 0
0.4 to 0.8
Copper (Cu), % 4.0 to 5.0
0 to 0.3
Iron (Fe), % 0 to 0.5
95.6 to 98.2
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0.6 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.3
Nickel (Ni), % 0
0.4 to 0.8
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 16 to 18
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0

Comparable Variants