MakeItFrom.com
Menu (ESC)

A390.0 Aluminum vs. C19500 Copper

A390.0 aluminum belongs to the aluminum alloys classification, while C19500 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A390.0 aluminum and the bottom bar is C19500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
120
Elongation at Break, % 0.87 to 0.91
2.3 to 38
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 28
44
Tensile Strength: Ultimate (UTS), MPa 190 to 290
380 to 640
Tensile Strength: Yield (Proof), MPa 190 to 290
120 to 600

Thermal Properties

Latent Heat of Fusion, J/g 640
210
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 580
1090
Melting Onset (Solidus), °C 480
1090
Specific Heat Capacity, J/kg-K 880
390
Thermal Conductivity, W/m-K 130
200
Thermal Expansion, µm/m-K 20
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
50 to 56
Electrical Conductivity: Equal Weight (Specific), % IACS 67
50 to 57

Otherwise Unclassified Properties

Base Metal Price, % relative 11
31
Density, g/cm3 2.7
8.9
Embodied Carbon, kg CO2/kg material 7.3
2.7
Embodied Energy, MJ/kg 140
42
Embodied Water, L/kg 950
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 2.6
14 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 580
59 to 1530
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 52
18
Strength to Weight: Axial, points 19 to 30
12 to 20
Strength to Weight: Bending, points 27 to 36
13 to 18
Thermal Diffusivity, mm2/s 56
58
Thermal Shock Resistance, points 9.0 to 14
13 to 23

Alloy Composition

Aluminum (Al), % 75.3 to 79.6
0 to 0.020
Cobalt (Co), % 0
0.3 to 1.3
Copper (Cu), % 4.0 to 5.0
94.9 to 98.6
Iron (Fe), % 0 to 0.5
1.0 to 2.0
Lead (Pb), % 0
0 to 0.020
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0
Phosphorus (P), % 0
0.010 to 0.35
Silicon (Si), % 16 to 18
0
Tin (Sn), % 0
0.1 to 1.0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0 to 0.2
Residuals, % 0
0 to 0.2