MakeItFrom.com
Menu (ESC)

A390.0 Aluminum vs. C87700 Bronze

A390.0 aluminum belongs to the aluminum alloys classification, while C87700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A390.0 aluminum and the bottom bar is C87700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 75
110
Elongation at Break, % 0.87 to 0.91
3.6
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
42
Tensile Strength: Ultimate (UTS), MPa 190 to 290
300
Tensile Strength: Yield (Proof), MPa 190 to 290
120

Thermal Properties

Latent Heat of Fusion, J/g 640
250
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 580
980
Melting Onset (Solidus), °C 480
900
Specific Heat Capacity, J/kg-K 880
400
Thermal Conductivity, W/m-K 130
120
Thermal Expansion, µm/m-K 20
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 20
45
Electrical Conductivity: Equal Weight (Specific), % IACS 67
48

Otherwise Unclassified Properties

Base Metal Price, % relative 11
29
Density, g/cm3 2.7
8.5
Embodied Carbon, kg CO2/kg material 7.3
2.7
Embodied Energy, MJ/kg 140
45
Embodied Water, L/kg 950
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 2.6
8.6
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 580
64
Stiffness to Weight: Axial, points 15
7.4
Stiffness to Weight: Bending, points 52
19
Strength to Weight: Axial, points 19 to 30
9.8
Strength to Weight: Bending, points 27 to 36
12
Thermal Diffusivity, mm2/s 56
34
Thermal Shock Resistance, points 9.0 to 14
11

Alloy Composition

Aluminum (Al), % 75.3 to 79.6
0
Antimony (Sb), % 0
0 to 0.1
Copper (Cu), % 4.0 to 5.0
87.5 to 90.5
Iron (Fe), % 0 to 0.5
0 to 0.5
Lead (Pb), % 0
0 to 0.090
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0 to 0.8
Nickel (Ni), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.15
Silicon (Si), % 16 to 18
2.5 to 3.5
Tin (Sn), % 0
0 to 2.0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
7.0 to 9.0
Residuals, % 0
0 to 0.8