MakeItFrom.com
Menu (ESC)

A390.0 Aluminum vs. S31730 Stainless Steel

A390.0 aluminum belongs to the aluminum alloys classification, while S31730 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A390.0 aluminum and the bottom bar is S31730 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110 to 140
180
Elastic (Young's, Tensile) Modulus, GPa 75
200
Elongation at Break, % 0.87 to 0.91
40
Fatigue Strength, MPa 70 to 100
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
77
Tensile Strength: Ultimate (UTS), MPa 190 to 290
540
Tensile Strength: Yield (Proof), MPa 190 to 290
200

Thermal Properties

Latent Heat of Fusion, J/g 640
290
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 580
1430
Melting Onset (Solidus), °C 480
1390
Specific Heat Capacity, J/kg-K 880
470
Thermal Expansion, µm/m-K 20
16

Otherwise Unclassified Properties

Base Metal Price, % relative 11
24
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 7.3
4.6
Embodied Energy, MJ/kg 140
63
Embodied Water, L/kg 950
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 1.6 to 2.6
170
Resilience: Unit (Modulus of Resilience), kJ/m3 240 to 580
99
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 19 to 30
19
Strength to Weight: Bending, points 27 to 36
18
Thermal Shock Resistance, points 9.0 to 14
12

Alloy Composition

Aluminum (Al), % 75.3 to 79.6
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 4.0 to 5.0
4.0 to 5.0
Iron (Fe), % 0 to 0.5
52.4 to 61
Magnesium (Mg), % 0.45 to 0.65
0
Manganese (Mn), % 0 to 0.1
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.0
Nickel (Ni), % 0
15 to 16.5
Nitrogen (N), % 0
0 to 0.045
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 16 to 18
0 to 1.0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.2
0