MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. 364.0 Aluminum

Both A413.0 aluminum and 364.0 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is 364.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
72
Elongation at Break, % 3.5
7.5
Fatigue Strength, MPa 130
120
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Shear Strength, MPa 170
200
Tensile Strength: Ultimate (UTS), MPa 240
300
Tensile Strength: Yield (Proof), MPa 130
160

Thermal Properties

Latent Heat of Fusion, J/g 570
520
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 590
600
Melting Onset (Solidus), °C 580
560
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 120
120
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
30
Electrical Conductivity: Equal Weight (Specific), % IACS 110
100

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
2.6
Embodied Carbon, kg CO2/kg material 7.6
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
19
Resilience: Unit (Modulus of Resilience), kJ/m3 120
180
Stiffness to Weight: Axial, points 16
15
Stiffness to Weight: Bending, points 54
53
Strength to Weight: Axial, points 25
31
Strength to Weight: Bending, points 33
38
Thermal Diffusivity, mm2/s 52
51
Thermal Shock Resistance, points 11
14

Alloy Composition

Aluminum (Al), % 82.9 to 89
87.2 to 92
Beryllium (Be), % 0
0.020 to 0.040
Chromium (Cr), % 0
0.25 to 0.5
Copper (Cu), % 0 to 1.0
0 to 0.2
Iron (Fe), % 0 to 1.3
0 to 1.5
Magnesium (Mg), % 0 to 0.1
0.2 to 0.4
Manganese (Mn), % 0 to 0.35
0 to 0.1
Nickel (Ni), % 0 to 0.5
0 to 0.15
Silicon (Si), % 11 to 13
7.5 to 9.5
Tin (Sn), % 0 to 0.15
0 to 0.15
Zinc (Zn), % 0 to 0.5
0 to 0.15
Residuals, % 0
0 to 0.15