MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. 443.0 Aluminum

Both A413.0 aluminum and 443.0 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a moderately high 92% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is 443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
41
Elastic (Young's, Tensile) Modulus, GPa 73
71
Elongation at Break, % 3.5
5.6
Fatigue Strength, MPa 130
55
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Shear Strength, MPa 170
96
Tensile Strength: Ultimate (UTS), MPa 240
150
Tensile Strength: Yield (Proof), MPa 130
65

Thermal Properties

Latent Heat of Fusion, J/g 570
470
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 590
630
Melting Onset (Solidus), °C 580
580
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 120
150
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
38
Electrical Conductivity: Equal Weight (Specific), % IACS 110
130

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.6
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
6.9
Resilience: Unit (Modulus of Resilience), kJ/m3 120
30
Stiffness to Weight: Axial, points 16
15
Stiffness to Weight: Bending, points 54
52
Strength to Weight: Axial, points 25
16
Strength to Weight: Bending, points 33
23
Thermal Diffusivity, mm2/s 52
61
Thermal Shock Resistance, points 11
6.9

Alloy Composition

Aluminum (Al), % 82.9 to 89
90.7 to 95.5
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0 to 1.0
0 to 0.6
Iron (Fe), % 0 to 1.3
0 to 0.8
Magnesium (Mg), % 0 to 0.1
0 to 0.050
Manganese (Mn), % 0 to 0.35
0 to 0.5
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 11 to 13
4.5 to 6.0
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.5
0 to 0.5
Residuals, % 0
0 to 0.35