MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. 6061 Aluminum

Both A413.0 aluminum and 6061 aluminum are aluminum alloys. They have 88% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is 6061 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
69
Elongation at Break, % 3.5
3.4 to 20
Fatigue Strength, MPa 130
58 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 170
84 to 210
Tensile Strength: Ultimate (UTS), MPa 240
130 to 410
Tensile Strength: Yield (Proof), MPa 130
76 to 370

Thermal Properties

Latent Heat of Fusion, J/g 570
400
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 590
650
Melting Onset (Solidus), °C 580
580
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 120
170
Thermal Expansion, µm/m-K 21
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
43
Electrical Conductivity: Equal Weight (Specific), % IACS 110
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.6
8.3
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
3.8 to 81
Resilience: Unit (Modulus of Resilience), kJ/m3 120
42 to 1000
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
50
Strength to Weight: Axial, points 25
13 to 42
Strength to Weight: Bending, points 33
21 to 45
Thermal Diffusivity, mm2/s 52
68
Thermal Shock Resistance, points 11
5.7 to 18

Alloy Composition

Aluminum (Al), % 82.9 to 89
95.9 to 98.6
Chromium (Cr), % 0
0.040 to 0.35
Copper (Cu), % 0 to 1.0
0.15 to 0.4
Iron (Fe), % 0 to 1.3
0 to 0.7
Magnesium (Mg), % 0 to 0.1
0.8 to 1.2
Manganese (Mn), % 0 to 0.35
0 to 0.15
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 11 to 13
0.4 to 0.8
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.5
0 to 0.25
Residuals, % 0
0 to 0.15