MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. ACI-ASTM CA6N Steel

A413.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CA6N steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is ACI-ASTM CA6N steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.5
17
Fatigue Strength, MPa 130
640
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 240
1080
Tensile Strength: Yield (Proof), MPa 130
1060

Thermal Properties

Latent Heat of Fusion, J/g 570
280
Maximum Temperature: Mechanical, °C 170
740
Melting Completion (Liquidus), °C 590
1440
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
23
Thermal Expansion, µm/m-K 21
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
11
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.6
2.5
Embodied Energy, MJ/kg 140
35
Embodied Water, L/kg 1040
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
180
Resilience: Unit (Modulus of Resilience), kJ/m3 120
2900
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 25
38
Strength to Weight: Bending, points 33
30
Thermal Diffusivity, mm2/s 52
6.1
Thermal Shock Resistance, points 11
40

Alloy Composition

Aluminum (Al), % 82.9 to 89
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
10.5 to 12.5
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 1.3
77.9 to 83.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 0.5
Nickel (Ni), % 0 to 0.5
6.0 to 8.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 11 to 13
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0