MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. AISI 414 Stainless Steel

A413.0 aluminum belongs to the aluminum alloys classification, while AISI 414 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is AISI 414 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.5
17
Fatigue Strength, MPa 130
430 to 480
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 170
550 to 590
Tensile Strength: Ultimate (UTS), MPa 240
900 to 960
Tensile Strength: Yield (Proof), MPa 130
700 to 790

Thermal Properties

Latent Heat of Fusion, J/g 570
280
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 590
1440
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
25
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
8.0
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.6
2.1
Embodied Energy, MJ/kg 140
29
Embodied Water, L/kg 1040
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
140 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 120
1260 to 1590
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 25
32 to 34
Strength to Weight: Bending, points 33
27 to 28
Thermal Diffusivity, mm2/s 52
6.7
Thermal Shock Resistance, points 11
33 to 35

Alloy Composition

Aluminum (Al), % 82.9 to 89
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 1.3
81.8 to 87.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 0 to 0.5
1.3 to 2.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 11 to 13
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0