MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. ASTM A369 Grade FP5

A413.0 aluminum belongs to the aluminum alloys classification, while ASTM A369 grade FP5 belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is ASTM A369 grade FP5.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
140
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.5
20
Fatigue Strength, MPa 130
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 170
300
Tensile Strength: Ultimate (UTS), MPa 240
470
Tensile Strength: Yield (Proof), MPa 130
240

Thermal Properties

Latent Heat of Fusion, J/g 570
260
Maximum Temperature: Mechanical, °C 170
510
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
40
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.3
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.6
1.7
Embodied Energy, MJ/kg 140
23
Embodied Water, L/kg 1040
69

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
80
Resilience: Unit (Modulus of Resilience), kJ/m3 120
140
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 25
17
Strength to Weight: Bending, points 33
17
Thermal Diffusivity, mm2/s 52
11
Thermal Shock Resistance, points 11
13

Alloy Composition

Aluminum (Al), % 82.9 to 89
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
4.0 to 6.0
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 1.3
92.1 to 95.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0.3 to 0.6
Molybdenum (Mo), % 0
0.45 to 0.65
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 11 to 13
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0