MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. AWS ER80S-Ni1

A413.0 aluminum belongs to the aluminum alloys classification, while AWS ER80S-Ni1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is AWS ER80S-Ni1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.5
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 240
630
Tensile Strength: Yield (Proof), MPa 130
530

Thermal Properties

Latent Heat of Fusion, J/g 570
260
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
41
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.7
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.6
1.6
Embodied Energy, MJ/kg 140
21
Embodied Water, L/kg 1040
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
160
Resilience: Unit (Modulus of Resilience), kJ/m3 120
740
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 25
22
Strength to Weight: Bending, points 33
21
Thermal Diffusivity, mm2/s 52
11
Thermal Shock Resistance, points 11
19

Alloy Composition

Aluminum (Al), % 82.9 to 89
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0 to 1.0
0 to 0.35
Iron (Fe), % 0 to 1.3
95.3 to 98.8
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 1.3
Molybdenum (Mo), % 0
0 to 0.35
Nickel (Ni), % 0 to 0.5
0.8 to 1.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 11 to 13
0.4 to 0.8
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.15
0
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0
0 to 0.5