MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. EN 1.0536 Steel

A413.0 aluminum belongs to the aluminum alloys classification, while EN 1.0536 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is EN 1.0536 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
210
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.5
18
Fatigue Strength, MPa 130
340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 170
440
Tensile Strength: Ultimate (UTS), MPa 240
710
Tensile Strength: Yield (Proof), MPa 130
510

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
51
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.1
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.6
1.7
Embodied Energy, MJ/kg 140
24
Embodied Water, L/kg 1040
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
120
Resilience: Unit (Modulus of Resilience), kJ/m3 120
690
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 25
25
Strength to Weight: Bending, points 33
23
Thermal Diffusivity, mm2/s 52
14
Thermal Shock Resistance, points 11
22

Alloy Composition

Aluminum (Al), % 82.9 to 89
0.010 to 0.050
Carbon (C), % 0
0.16 to 0.22
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 1.3
97.2 to 98.4
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
1.3 to 1.7
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 11 to 13
0.1 to 0.5
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.15
0
Vanadium (V), % 0
0.080 to 0.15
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0