MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. EN 1.1121 Steel

A413.0 aluminum belongs to the aluminum alloys classification, while EN 1.1121 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is EN 1.1121 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
120
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.5
28
Fatigue Strength, MPa 130
160
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 170
260
Tensile Strength: Ultimate (UTS), MPa 240
400
Tensile Strength: Yield (Proof), MPa 130
210

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
53
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.8
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.6
1.4
Embodied Energy, MJ/kg 140
18
Embodied Water, L/kg 1040
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
93
Resilience: Unit (Modulus of Resilience), kJ/m3 120
110
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 25
14
Strength to Weight: Bending, points 33
15
Thermal Diffusivity, mm2/s 52
14
Thermal Shock Resistance, points 11
13

Alloy Composition

Aluminum (Al), % 82.9 to 89
0
Carbon (C), % 0
0.070 to 0.13
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 1.3
98.8 to 99.63
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0.3 to 0.6
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 11 to 13
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0