MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. EN 1.4652 Stainless Steel

A413.0 aluminum belongs to the aluminum alloys classification, while EN 1.4652 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is EN 1.4652 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
270
Elastic (Young's, Tensile) Modulus, GPa 73
210
Elongation at Break, % 3.5
45
Fatigue Strength, MPa 130
450
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 170
610
Tensile Strength: Ultimate (UTS), MPa 240
880
Tensile Strength: Yield (Proof), MPa 130
490

Thermal Properties

Latent Heat of Fusion, J/g 570
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 120
9.8
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
34
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 7.6
6.4
Embodied Energy, MJ/kg 140
87
Embodied Water, L/kg 1040
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
340
Resilience: Unit (Modulus of Resilience), kJ/m3 120
570
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 25
30
Strength to Weight: Bending, points 33
25
Thermal Diffusivity, mm2/s 52
2.6
Thermal Shock Resistance, points 11
20

Alloy Composition

Aluminum (Al), % 82.9 to 89
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 0 to 1.0
0.3 to 0.6
Iron (Fe), % 0 to 1.3
38.3 to 46.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
2.0 to 4.0
Molybdenum (Mo), % 0
7.0 to 8.0
Nickel (Ni), % 0 to 0.5
21 to 23
Nitrogen (N), % 0
0.45 to 0.55
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 11 to 13
0 to 0.5
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0