MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. EN 1.4988 Stainless Steel

A413.0 aluminum belongs to the aluminum alloys classification, while EN 1.4988 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is EN 1.4988 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
190
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 3.5
34
Fatigue Strength, MPa 130
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 170
430
Tensile Strength: Ultimate (UTS), MPa 240
640
Tensile Strength: Yield (Proof), MPa 130
290

Thermal Properties

Latent Heat of Fusion, J/g 570
290
Maximum Temperature: Mechanical, °C 170
920
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.6
6.0
Embodied Energy, MJ/kg 140
89
Embodied Water, L/kg 1040
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
180
Resilience: Unit (Modulus of Resilience), kJ/m3 120
210
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 25
23
Strength to Weight: Bending, points 33
21
Thermal Diffusivity, mm2/s 52
4.0
Thermal Shock Resistance, points 11
14

Alloy Composition

Aluminum (Al), % 82.9 to 89
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 1.3
62.1 to 69.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 1.5
Molybdenum (Mo), % 0
1.1 to 1.5
Nickel (Ni), % 0 to 0.5
12.5 to 14.5
Niobium (Nb), % 0
0.4 to 1.2
Nitrogen (N), % 0
0.060 to 0.14
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 11 to 13
0.3 to 0.6
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Vanadium (V), % 0
0.6 to 0.85
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0