MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. EN 1.5536 Steel

A413.0 aluminum belongs to the aluminum alloys classification, while EN 1.5536 steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is EN 1.5536 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
140 to 170
Elastic (Young's, Tensile) Modulus, GPa 73
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 240
460 to 1600

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
49
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
1.9
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.6
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1040
48

Common Calculations

Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 25
16 to 57
Strength to Weight: Bending, points 33
17 to 39
Thermal Diffusivity, mm2/s 52
13
Thermal Shock Resistance, points 11
14 to 47

Alloy Composition

Aluminum (Al), % 82.9 to 89
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.25 to 0.3
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 1.0
0 to 0.25
Iron (Fe), % 0 to 1.3
97.6 to 98.7
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0.9 to 1.2
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 11 to 13
0.15 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0