MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. EN 1.6580 Steel

A413.0 aluminum belongs to the aluminum alloys classification, while EN 1.6580 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is EN 1.6580 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
220 to 350
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.5
11 to 19
Fatigue Strength, MPa 130
310 to 610
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 170
450 to 700
Tensile Strength: Ultimate (UTS), MPa 240
720 to 1170
Tensile Strength: Yield (Proof), MPa 130
460 to 990

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Maximum Temperature: Mechanical, °C 170
450
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
40
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
4.3
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.6
1.8
Embodied Energy, MJ/kg 140
23
Embodied Water, L/kg 1040
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 120
560 to 2590
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 25
26 to 41
Strength to Weight: Bending, points 33
23 to 31
Thermal Diffusivity, mm2/s 52
11
Thermal Shock Resistance, points 11
21 to 34

Alloy Composition

Aluminum (Al), % 82.9 to 89
0
Carbon (C), % 0
0.26 to 0.34
Chromium (Cr), % 0
1.8 to 2.2
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 1.3
93.7 to 95.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0.3 to 0.6
Molybdenum (Mo), % 0
0.3 to 0.5
Nickel (Ni), % 0 to 0.5
1.8 to 2.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 11 to 13
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0