MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. EN 2.4633 Nickel

A413.0 aluminum belongs to the aluminum alloys classification, while EN 2.4633 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is EN 2.4633 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 3.5
34
Fatigue Strength, MPa 130
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 170
510
Tensile Strength: Ultimate (UTS), MPa 240
760
Tensile Strength: Yield (Proof), MPa 130
310

Thermal Properties

Latent Heat of Fusion, J/g 570
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 590
1350
Melting Onset (Solidus), °C 580
1300
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.6
8.2
Embodied Carbon, kg CO2/kg material 7.6
8.4
Embodied Energy, MJ/kg 140
120
Embodied Water, L/kg 1040
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
210
Resilience: Unit (Modulus of Resilience), kJ/m3 120
240
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 25
26
Strength to Weight: Bending, points 33
23
Thermal Diffusivity, mm2/s 52
2.9
Thermal Shock Resistance, points 11
22

Alloy Composition

Aluminum (Al), % 82.9 to 89
1.8 to 2.4
Carbon (C), % 0
0.15 to 0.25
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 1.0
0 to 0.1
Iron (Fe), % 0 to 1.3
8.0 to 11
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 0.5
Nickel (Ni), % 0 to 0.5
58.8 to 65.9
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 11 to 13
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0.1 to 0.2
Yttrium (Y), % 0
0.050 to 0.12
Zinc (Zn), % 0 to 0.5
0
Zirconium (Zr), % 0
0.010 to 0.1
Residuals, % 0 to 0.25
0