MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. EN 2.4856 Nickel

A413.0 aluminum belongs to the aluminum alloys classification, while EN 2.4856 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is EN 2.4856 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
210
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 3.5
28
Fatigue Strength, MPa 130
280
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
79
Shear Strength, MPa 170
570
Tensile Strength: Ultimate (UTS), MPa 240
880
Tensile Strength: Yield (Proof), MPa 130
430

Thermal Properties

Latent Heat of Fusion, J/g 570
330
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 590
1480
Melting Onset (Solidus), °C 580
1430
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 120
10
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
80
Density, g/cm3 2.6
8.6
Embodied Carbon, kg CO2/kg material 7.6
14
Embodied Energy, MJ/kg 140
190
Embodied Water, L/kg 1040
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
200
Resilience: Unit (Modulus of Resilience), kJ/m3 120
440
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
23
Strength to Weight: Axial, points 25
28
Strength to Weight: Bending, points 33
24
Thermal Diffusivity, mm2/s 52
2.7
Thermal Shock Resistance, points 11
29

Alloy Composition

Aluminum (Al), % 82.9 to 89
0 to 0.4
Carbon (C), % 0
0.030 to 0.1
Chromium (Cr), % 0
20 to 23
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 1.0
0 to 0.5
Iron (Fe), % 0 to 1.3
0 to 5.0
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 0.5
Molybdenum (Mo), % 0
8.0 to 10
Nickel (Ni), % 0 to 0.5
58 to 68.8
Niobium (Nb), % 0
3.2 to 4.2
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 11 to 13
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.4
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0