MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. EN AC-43400 Aluminum

Both A413.0 aluminum and EN AC-43400 aluminum are aluminum alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is EN AC-43400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
80
Elastic (Young's, Tensile) Modulus, GPa 73
72
Elongation at Break, % 3.5
1.1
Fatigue Strength, MPa 130
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 240
270
Tensile Strength: Yield (Proof), MPa 130
160

Thermal Properties

Latent Heat of Fusion, J/g 570
540
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 590
600
Melting Onset (Solidus), °C 580
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 120
140
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
32
Electrical Conductivity: Equal Weight (Specific), % IACS 110
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.6
Embodied Carbon, kg CO2/kg material 7.6
7.8
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 120
180
Stiffness to Weight: Axial, points 16
15
Stiffness to Weight: Bending, points 54
54
Strength to Weight: Axial, points 25
29
Strength to Weight: Bending, points 33
36
Thermal Diffusivity, mm2/s 52
59
Thermal Shock Resistance, points 11
12

Alloy Composition

Aluminum (Al), % 82.9 to 89
86 to 90.8
Copper (Cu), % 0 to 1.0
0 to 0.1
Iron (Fe), % 0 to 1.3
0 to 1.0
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0 to 0.1
0.2 to 0.5
Manganese (Mn), % 0 to 0.35
0 to 0.55
Nickel (Ni), % 0 to 0.5
0 to 0.15
Silicon (Si), % 11 to 13
9.0 to 11
Tin (Sn), % 0 to 0.15
0 to 0.050
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.5
0 to 0.15
Residuals, % 0
0 to 0.15