MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. SAE-AISI 5160 Steel

A413.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 5160 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is SAE-AISI 5160 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
200 to 340
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.5
12 to 18
Fatigue Strength, MPa 130
180 to 650
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 170
390 to 700
Tensile Strength: Ultimate (UTS), MPa 240
660 to 1150
Tensile Strength: Yield (Proof), MPa 130
280 to 1010

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 580
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 120
43
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.1
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.6
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1040
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
73 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 120
200 to 2700
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 25
23 to 41
Strength to Weight: Bending, points 33
22 to 31
Thermal Diffusivity, mm2/s 52
12
Thermal Shock Resistance, points 11
19 to 34

Alloy Composition

Aluminum (Al), % 82.9 to 89
0
Carbon (C), % 0
0.56 to 0.61
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 1.3
97.1 to 97.8
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0.75 to 1.0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 11 to 13
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0