MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. C31600 Bronze

A413.0 aluminum belongs to the aluminum alloys classification, while C31600 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is C31600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
110
Elongation at Break, % 3.5
6.7 to 28
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
42
Shear Strength, MPa 170
170 to 270
Tensile Strength: Ultimate (UTS), MPa 240
270 to 460
Tensile Strength: Yield (Proof), MPa 130
80 to 390

Thermal Properties

Latent Heat of Fusion, J/g 570
200
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 590
1040
Melting Onset (Solidus), °C 580
1010
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 120
140
Thermal Expansion, µm/m-K 21
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
32
Electrical Conductivity: Equal Weight (Specific), % IACS 110
33

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
29
Density, g/cm3 2.6
8.8
Embodied Carbon, kg CO2/kg material 7.6
2.7
Embodied Energy, MJ/kg 140
43
Embodied Water, L/kg 1040
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
30 to 58
Resilience: Unit (Modulus of Resilience), kJ/m3 120
28 to 690
Stiffness to Weight: Axial, points 16
7.1
Stiffness to Weight: Bending, points 54
18
Strength to Weight: Axial, points 25
8.5 to 15
Strength to Weight: Bending, points 33
11 to 15
Thermal Diffusivity, mm2/s 52
42
Thermal Shock Resistance, points 11
9.4 to 16

Alloy Composition

Aluminum (Al), % 82.9 to 89
0
Copper (Cu), % 0 to 1.0
87.5 to 90.5
Iron (Fe), % 0 to 1.3
0 to 0.1
Lead (Pb), % 0
1.3 to 2.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0
Nickel (Ni), % 0 to 0.5
0.7 to 1.2
Phosphorus (P), % 0
0.040 to 0.1
Silicon (Si), % 11 to 13
0
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
5.2 to 10.5
Residuals, % 0
0 to 0.4