MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. N07750 Nickel

A413.0 aluminum belongs to the aluminum alloys classification, while N07750 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is N07750 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 3.5
25
Fatigue Strength, MPa 130
520
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 170
770
Tensile Strength: Ultimate (UTS), MPa 240
1200
Tensile Strength: Yield (Proof), MPa 130
820

Thermal Properties

Latent Heat of Fusion, J/g 570
310
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 590
1430
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 120
13
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.6
8.4
Embodied Carbon, kg CO2/kg material 7.6
10
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
270
Resilience: Unit (Modulus of Resilience), kJ/m3 120
1770
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 54
23
Strength to Weight: Axial, points 25
40
Strength to Weight: Bending, points 33
30
Thermal Diffusivity, mm2/s 52
3.3
Thermal Shock Resistance, points 11
36

Alloy Composition

Aluminum (Al), % 82.9 to 89
0.4 to 1.0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
14 to 17
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0 to 1.0
0 to 0.5
Iron (Fe), % 0 to 1.3
5.0 to 9.0
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 0 to 0.5
70 to 77.7
Niobium (Nb), % 0
0.7 to 1.2
Silicon (Si), % 11 to 13
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
2.3 to 2.8
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0