MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. N08024 Nickel

A413.0 aluminum belongs to the aluminum alloys classification, while N08024 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is N08024 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 3.5
34
Fatigue Strength, MPa 130
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Shear Strength, MPa 170
410
Tensile Strength: Ultimate (UTS), MPa 240
620
Tensile Strength: Yield (Proof), MPa 130
270

Thermal Properties

Latent Heat of Fusion, J/g 570
310
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 590
1430
Melting Onset (Solidus), °C 580
1380
Specific Heat Capacity, J/kg-K 900
460
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 110
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
41
Density, g/cm3 2.6
8.2
Embodied Carbon, kg CO2/kg material 7.6
7.2
Embodied Energy, MJ/kg 140
99
Embodied Water, L/kg 1040
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
170
Resilience: Unit (Modulus of Resilience), kJ/m3 120
180
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 25
21
Strength to Weight: Bending, points 33
20
Thermal Diffusivity, mm2/s 52
3.2
Thermal Shock Resistance, points 11
15

Alloy Composition

Aluminum (Al), % 82.9 to 89
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22.5 to 25
Copper (Cu), % 0 to 1.0
0.5 to 1.5
Iron (Fe), % 0 to 1.3
26.6 to 38.4
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0 to 0.5
35 to 40
Niobium (Nb), % 0
0.15 to 0.35
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 11 to 13
0 to 0.5
Sulfur (S), % 0
0 to 0.035
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0