MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. S32304 Stainless Steel

A413.0 aluminum belongs to the aluminum alloys classification, while S32304 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is S32304 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
250
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 3.5
28
Fatigue Strength, MPa 130
330
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
79
Shear Strength, MPa 170
440
Tensile Strength: Ultimate (UTS), MPa 240
670
Tensile Strength: Yield (Proof), MPa 130
460

Thermal Properties

Latent Heat of Fusion, J/g 570
290
Maximum Temperature: Mechanical, °C 170
1050
Melting Completion (Liquidus), °C 590
1420
Melting Onset (Solidus), °C 580
1380
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 120
15
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 31
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 110
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.6
7.7
Embodied Carbon, kg CO2/kg material 7.6
2.8
Embodied Energy, MJ/kg 140
40
Embodied Water, L/kg 1040
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
170
Resilience: Unit (Modulus of Resilience), kJ/m3 120
520
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
25
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 33
22
Thermal Diffusivity, mm2/s 52
4.0
Thermal Shock Resistance, points 11
18

Alloy Composition

Aluminum (Al), % 82.9 to 89
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
21.5 to 24.5
Copper (Cu), % 0 to 1.0
0.050 to 0.6
Iron (Fe), % 0 to 1.3
65 to 75.4
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 2.5
Molybdenum (Mo), % 0
0.050 to 0.6
Nickel (Ni), % 0 to 0.5
3.0 to 5.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 11 to 13
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0