MakeItFrom.com
Menu (ESC)

A413.0 Aluminum vs. S35135 Stainless Steel

A413.0 aluminum belongs to the aluminum alloys classification, while S35135 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A413.0 aluminum and the bottom bar is S35135 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 3.5
34
Fatigue Strength, MPa 130
180
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Shear Strength, MPa 170
390
Tensile Strength: Ultimate (UTS), MPa 240
590
Tensile Strength: Yield (Proof), MPa 130
230

Thermal Properties

Latent Heat of Fusion, J/g 570
320
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 590
1430
Melting Onset (Solidus), °C 580
1380
Specific Heat Capacity, J/kg-K 900
470
Thermal Expansion, µm/m-K 21
16

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.6
8.1
Embodied Carbon, kg CO2/kg material 7.6
6.8
Embodied Energy, MJ/kg 140
94
Embodied Water, L/kg 1040
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 7.1
160
Resilience: Unit (Modulus of Resilience), kJ/m3 120
130
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 54
24
Strength to Weight: Axial, points 25
20
Strength to Weight: Bending, points 33
19
Thermal Shock Resistance, points 11
13

Alloy Composition

Aluminum (Al), % 82.9 to 89
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
20 to 25
Copper (Cu), % 0 to 1.0
0 to 0.75
Iron (Fe), % 0 to 1.3
28.3 to 45
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Molybdenum (Mo), % 0
4.0 to 4.8
Nickel (Ni), % 0 to 0.5
30 to 38
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 11 to 13
0.6 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0.4 to 1.0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0