MakeItFrom.com
Menu (ESC)

A444.0 Aluminum vs. Zamak 2

A444.0 aluminum belongs to the aluminum alloys classification, while Zamak 2 belongs to the zinc alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A444.0 aluminum and the bottom bar is Zamak 2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
87
Elongation at Break, % 18
6.0
Fatigue Strength, MPa 37
59
Poisson's Ratio 0.33
0.26
Shear Modulus, GPa 26
33
Tensile Strength: Ultimate (UTS), MPa 160
360
Tensile Strength: Yield (Proof), MPa 66
270

Thermal Properties

Latent Heat of Fusion, J/g 500
130
Maximum Temperature: Mechanical, °C 170
95
Melting Completion (Liquidus), °C 630
390
Melting Onset (Solidus), °C 590
380
Specific Heat Capacity, J/kg-K 900
410
Thermal Conductivity, W/m-K 160
110
Thermal Expansion, µm/m-K 22
28

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 41
25
Electrical Conductivity: Equal Weight (Specific), % IACS 140
35

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 2.6
6.5
Embodied Carbon, kg CO2/kg material 7.9
3.0
Embodied Energy, MJ/kg 150
57
Embodied Water, L/kg 1110
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 24
20
Resilience: Unit (Modulus of Resilience), kJ/m3 31
420
Stiffness to Weight: Axial, points 15
7.5
Stiffness to Weight: Bending, points 53
23
Strength to Weight: Axial, points 17
15
Strength to Weight: Bending, points 25
17
Thermal Diffusivity, mm2/s 68
41
Thermal Shock Resistance, points 7.3
11

Alloy Composition

Aluminum (Al), % 91.6 to 93.5
3.5 to 4.3
Cadmium (Cd), % 0
0 to 0.0050
Copper (Cu), % 0 to 0.1
2.5 to 3.3
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0 to 0.050
0.020 to 0.060
Manganese (Mn), % 0 to 0.1
0
Nickel (Ni), % 0
0 to 0.020
Silicon (Si), % 6.5 to 7.5
0 to 0.030
Tin (Sn), % 0
0 to 0.0030
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 0.1
92.2 to 94
Residuals, % 0 to 0.15
0