MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. 5383 Aluminum

Both A535.0 aluminum and 5383 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is 5383 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
68
Elongation at Break, % 9.0
6.7 to 15
Fatigue Strength, MPa 95
130 to 200
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Tensile Strength: Ultimate (UTS), MPa 250
310 to 370
Tensile Strength: Yield (Proof), MPa 120
150 to 310

Thermal Properties

Latent Heat of Fusion, J/g 390
390
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 620
650
Melting Onset (Solidus), °C 550
540
Specific Heat Capacity, J/kg-K 910
900
Thermal Conductivity, W/m-K 100
130
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
29
Electrical Conductivity: Equal Weight (Specific), % IACS 79
97

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 9.3
9.0
Embodied Energy, MJ/kg 160
160
Embodied Water, L/kg 1180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
23 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 120
170 to 690
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
50
Strength to Weight: Axial, points 26
32 to 38
Strength to Weight: Bending, points 33
38 to 42
Thermal Diffusivity, mm2/s 42
51
Thermal Shock Resistance, points 11
14 to 16

Alloy Composition

Aluminum (Al), % 91.4 to 93.4
92 to 95.3
Chromium (Cr), % 0
0 to 0.25
Copper (Cu), % 0 to 0.1
0 to 0.2
Iron (Fe), % 0 to 0.2
0 to 0.25
Magnesium (Mg), % 6.5 to 7.5
4.0 to 5.2
Manganese (Mn), % 0.1 to 0.25
0.7 to 1.0
Silicon (Si), % 0 to 0.2
0 to 0.25
Titanium (Ti), % 0 to 0.25
0 to 0.15
Zinc (Zn), % 0
0 to 0.4
Zirconium (Zr), % 0
0 to 0.2
Residuals, % 0
0 to 0.15