MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. 7129 Aluminum

Both A535.0 aluminum and 7129 Aluminum are aluminum alloys. They have a moderately high 94% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is 7129 Aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
69
Elongation at Break, % 9.0
9.0 to 9.1
Fatigue Strength, MPa 95
150 to 190
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 25
26
Tensile Strength: Ultimate (UTS), MPa 250
430
Tensile Strength: Yield (Proof), MPa 120
380 to 390

Thermal Properties

Latent Heat of Fusion, J/g 390
380
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 620
630
Melting Onset (Solidus), °C 550
510
Specific Heat Capacity, J/kg-K 910
880
Thermal Conductivity, W/m-K 100
150
Thermal Expansion, µm/m-K 24
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
40
Electrical Conductivity: Equal Weight (Specific), % IACS 79
120

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.9
Embodied Carbon, kg CO2/kg material 9.3
8.3
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1180
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
37 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 120
1050 to 1090
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
47
Strength to Weight: Axial, points 26
41
Strength to Weight: Bending, points 33
43 to 44
Thermal Diffusivity, mm2/s 42
58
Thermal Shock Resistance, points 11
19

Alloy Composition

Aluminum (Al), % 91.4 to 93.4
91 to 94
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0 to 0.1
0.5 to 0.9
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 0 to 0.2
0 to 0.3
Magnesium (Mg), % 6.5 to 7.5
1.3 to 2.0
Manganese (Mn), % 0.1 to 0.25
0 to 0.1
Silicon (Si), % 0 to 0.2
0 to 0.15
Titanium (Ti), % 0 to 0.25
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
4.2 to 5.2
Residuals, % 0
0 to 0.15