MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. AWS E347

A535.0 aluminum belongs to the aluminum alloys classification, while AWS E347 belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is AWS E347.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 9.0
34
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
77
Tensile Strength: Ultimate (UTS), MPa 250
580

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Melting Completion (Liquidus), °C 620
1430
Melting Onset (Solidus), °C 550
1380
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 100
16
Thermal Expansion, µm/m-K 24
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 79
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
19
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.3
3.7
Embodied Energy, MJ/kg 160
53
Embodied Water, L/kg 1180
150

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 26
21
Strength to Weight: Bending, points 33
20
Thermal Diffusivity, mm2/s 42
4.2
Thermal Shock Resistance, points 11
15

Alloy Composition

Aluminum (Al), % 91.4 to 93.4
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
18 to 21
Copper (Cu), % 0 to 0.1
0 to 0.75
Iron (Fe), % 0 to 0.2
61.9 to 72.5
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0.5 to 2.5
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 0
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Residuals, % 0 to 0.15
0