MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. EN 1.4580 Stainless Steel

A535.0 aluminum belongs to the aluminum alloys classification, while EN 1.4580 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is EN 1.4580 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 9.0
40
Fatigue Strength, MPa 95
210
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
78
Tensile Strength: Ultimate (UTS), MPa 250
620
Tensile Strength: Yield (Proof), MPa 120
250

Thermal Properties

Latent Heat of Fusion, J/g 390
290
Maximum Temperature: Mechanical, °C 170
950
Melting Completion (Liquidus), °C 620
1450
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 100
15
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 79
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 9.3
4.3
Embodied Energy, MJ/kg 160
60
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
200
Resilience: Unit (Modulus of Resilience), kJ/m3 120
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 26
22
Strength to Weight: Bending, points 33
21
Thermal Diffusivity, mm2/s 42
4.0
Thermal Shock Resistance, points 11
14

Alloy Composition

Aluminum (Al), % 91.4 to 93.4
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.2
61.4 to 71
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 0
10.5 to 13.5
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Residuals, % 0 to 0.15
0