MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. EN 1.4659 Stainless Steel

A535.0 aluminum belongs to the aluminum alloys classification, while EN 1.4659 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is EN 1.4659 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
210
Elongation at Break, % 9.0
49
Fatigue Strength, MPa 95
460
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
81
Tensile Strength: Ultimate (UTS), MPa 250
900
Tensile Strength: Yield (Proof), MPa 120
480

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 620
1480
Melting Onset (Solidus), °C 550
1430
Specific Heat Capacity, J/kg-K 910
460
Thermal Conductivity, W/m-K 100
12
Thermal Expansion, µm/m-K 24
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 79
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 2.6
8.2
Embodied Carbon, kg CO2/kg material 9.3
6.5
Embodied Energy, MJ/kg 160
89
Embodied Water, L/kg 1180
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
370
Resilience: Unit (Modulus of Resilience), kJ/m3 120
550
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 26
31
Strength to Weight: Bending, points 33
25
Thermal Diffusivity, mm2/s 42
3.2
Thermal Shock Resistance, points 11
19

Alloy Composition

Aluminum (Al), % 91.4 to 93.4
0
Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 0 to 0.1
1.0 to 2.0
Iron (Fe), % 0 to 0.2
35.7 to 45.7
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
2.0 to 4.0
Molybdenum (Mo), % 0
5.5 to 6.5
Nickel (Ni), % 0
21 to 23
Nitrogen (N), % 0
0.35 to 0.5
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.2
0 to 0.7
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Tungsten (W), % 0
1.5 to 2.5
Residuals, % 0 to 0.15
0