MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. EN 1.7230 Steel

A535.0 aluminum belongs to the aluminum alloys classification, while EN 1.7230 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is EN 1.7230 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 9.0
11 to 12
Fatigue Strength, MPa 95
320 to 460
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Tensile Strength: Ultimate (UTS), MPa 250
720 to 910
Tensile Strength: Yield (Proof), MPa 120
510 to 740

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 100
44
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 79
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.4
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.3
1.5
Embodied Energy, MJ/kg 160
20
Embodied Water, L/kg 1180
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
79 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 120
700 to 1460
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 26
26 to 32
Strength to Weight: Bending, points 33
23 to 27
Thermal Diffusivity, mm2/s 42
12
Thermal Shock Resistance, points 11
21 to 27

Alloy Composition

Aluminum (Al), % 91.4 to 93.4
0
Carbon (C), % 0
0.3 to 0.37
Chromium (Cr), % 0
0.8 to 1.2
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.2
96.7 to 98.3
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0.5 to 0.8
Molybdenum (Mo), % 0
0.15 to 0.3
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0 to 0.2
0 to 0.6
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Residuals, % 0 to 0.15
0