MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. EN 2.4680 Cast Nickel

A535.0 aluminum belongs to the aluminum alloys classification, while EN 2.4680 cast nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is EN 2.4680 cast nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
210
Elongation at Break, % 9.0
9.1
Fatigue Strength, MPa 95
120
Poisson's Ratio 0.33
0.26
Shear Modulus, GPa 25
84
Tensile Strength: Ultimate (UTS), MPa 250
600
Tensile Strength: Yield (Proof), MPa 120
260

Thermal Properties

Latent Heat of Fusion, J/g 390
350
Maximum Temperature: Mechanical, °C 170
1050
Melting Completion (Liquidus), °C 620
1360
Melting Onset (Solidus), °C 550
1320
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 100
14
Thermal Expansion, µm/m-K 24
15

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 9.3
9.1
Embodied Energy, MJ/kg 160
130
Embodied Water, L/kg 1180
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
45
Resilience: Unit (Modulus of Resilience), kJ/m3 120
160
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 26
21
Strength to Weight: Bending, points 33
20
Thermal Diffusivity, mm2/s 42
3.7
Thermal Shock Resistance, points 11
14

Alloy Composition

Aluminum (Al), % 91.4 to 93.4
0
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
48 to 52
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.2
0 to 1.0
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
42.9 to 51
Niobium (Nb), % 0
1.0 to 1.8
Nitrogen (N), % 0
0 to 0.16
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Residuals, % 0 to 0.15
0