MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. SAE-AISI 51B60 Steel

A535.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 51B60 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is SAE-AISI 51B60 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 9.0
12 to 21
Fatigue Strength, MPa 95
280 to 340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Tensile Strength: Ultimate (UTS), MPa 250
660
Tensile Strength: Yield (Proof), MPa 120
400 to 550

Thermal Properties

Latent Heat of Fusion, J/g 390
250
Maximum Temperature: Mechanical, °C 170
420
Melting Completion (Liquidus), °C 620
1450
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 100
43
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 79
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.1
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.3
1.4
Embodied Energy, MJ/kg 160
19
Embodied Water, L/kg 1180
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
73 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 120
420 to 800
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 26
23
Strength to Weight: Bending, points 33
22
Thermal Diffusivity, mm2/s 42
12
Thermal Shock Resistance, points 11
19

Alloy Composition

Aluminum (Al), % 91.4 to 93.4
0
Boron (B), % 0
0.00050 to 0.0030
Carbon (C), % 0
0.56 to 0.64
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.2
97 to 97.8
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0.75 to 1.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.2
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Residuals, % 0 to 0.15
0