MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. Titanium 6-6-2

A535.0 aluminum belongs to the aluminum alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
120
Elongation at Break, % 9.0
6.7 to 9.0
Fatigue Strength, MPa 95
590 to 670
Poisson's Ratio 0.33
0.32
Shear Modulus, GPa 25
44
Tensile Strength: Ultimate (UTS), MPa 250
1140 to 1370
Tensile Strength: Yield (Proof), MPa 120
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 390
400
Maximum Temperature: Mechanical, °C 170
310
Melting Completion (Liquidus), °C 620
1610
Melting Onset (Solidus), °C 550
1560
Specific Heat Capacity, J/kg-K 910
540
Thermal Conductivity, W/m-K 100
5.5
Thermal Expansion, µm/m-K 24
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 79
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
40
Density, g/cm3 2.6
4.8
Embodied Carbon, kg CO2/kg material 9.3
29
Embodied Energy, MJ/kg 160
470
Embodied Water, L/kg 1180
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
89 to 99
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
34
Strength to Weight: Axial, points 26
66 to 79
Strength to Weight: Bending, points 33
50 to 57
Thermal Diffusivity, mm2/s 42
2.1
Thermal Shock Resistance, points 11
75 to 90

Alloy Composition

Aluminum (Al), % 91.4 to 93.4
5.0 to 6.0
Carbon (C), % 0
0 to 0.050
Copper (Cu), % 0 to 0.1
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0 to 0.2
0.35 to 1.0
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0
Molybdenum (Mo), % 0
5.0 to 6.0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Silicon (Si), % 0 to 0.2
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0 to 0.25
82.8 to 87.8
Residuals, % 0
0 to 0.4