MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. C49300 Brass

A535.0 aluminum belongs to the aluminum alloys classification, while C49300 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is C49300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
100
Elongation at Break, % 9.0
4.5 to 20
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 25
40
Tensile Strength: Ultimate (UTS), MPa 250
430 to 520
Tensile Strength: Yield (Proof), MPa 120
210 to 410

Thermal Properties

Latent Heat of Fusion, J/g 390
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 620
880
Melting Onset (Solidus), °C 550
840
Specific Heat Capacity, J/kg-K 910
380
Thermal Conductivity, W/m-K 100
88
Thermal Expansion, µm/m-K 24
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
15
Electrical Conductivity: Equal Weight (Specific), % IACS 79
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
26
Density, g/cm3 2.6
8.0
Embodied Carbon, kg CO2/kg material 9.3
3.0
Embodied Energy, MJ/kg 160
50
Embodied Water, L/kg 1180
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
21 to 71
Resilience: Unit (Modulus of Resilience), kJ/m3 120
220 to 800
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 51
19
Strength to Weight: Axial, points 26
15 to 18
Strength to Weight: Bending, points 33
16 to 18
Thermal Diffusivity, mm2/s 42
29
Thermal Shock Resistance, points 11
14 to 18

Alloy Composition

Aluminum (Al), % 91.4 to 93.4
0 to 0.5
Antimony (Sb), % 0
0 to 0.5
Bismuth (Bi), % 0
0.5 to 2.0
Copper (Cu), % 0 to 0.1
58 to 62
Iron (Fe), % 0 to 0.2
0 to 0.1
Lead (Pb), % 0
0 to 0.010
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 0.030
Nickel (Ni), % 0
0 to 1.5
Phosphorus (P), % 0
0 to 0.2
Selenium (Se), % 0
0 to 0.2
Silicon (Si), % 0 to 0.2
0 to 0.1
Tin (Sn), % 0
1.0 to 1.8
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0
30.6 to 40.5
Residuals, % 0
0 to 0.5