MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. C70260 Copper

A535.0 aluminum belongs to the aluminum alloys classification, while C70260 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is C70260 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
120
Elongation at Break, % 9.0
9.5 to 19
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 25
44
Tensile Strength: Ultimate (UTS), MPa 250
520 to 760
Tensile Strength: Yield (Proof), MPa 120
410 to 650

Thermal Properties

Latent Heat of Fusion, J/g 390
220
Maximum Temperature: Mechanical, °C 170
200
Melting Completion (Liquidus), °C 620
1060
Melting Onset (Solidus), °C 550
1040
Specific Heat Capacity, J/kg-K 910
390
Thermal Conductivity, W/m-K 100
160
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
40 to 50
Electrical Conductivity: Equal Weight (Specific), % IACS 79
40 to 51

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.6
8.9
Embodied Carbon, kg CO2/kg material 9.3
2.7
Embodied Energy, MJ/kg 160
43
Embodied Water, L/kg 1180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
46 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 120
710 to 1810
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 51
18
Strength to Weight: Axial, points 26
16 to 24
Strength to Weight: Bending, points 33
16 to 21
Thermal Diffusivity, mm2/s 42
45
Thermal Shock Resistance, points 11
18 to 27

Alloy Composition

Aluminum (Al), % 91.4 to 93.4
0
Copper (Cu), % 0 to 0.1
95.8 to 98.8
Iron (Fe), % 0 to 0.2
0
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0
Nickel (Ni), % 0
1.0 to 3.0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.2
0.2 to 0.7
Titanium (Ti), % 0 to 0.25
0
Residuals, % 0
0 to 0.5