MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. N06025 Nickel

A535.0 aluminum belongs to the aluminum alloys classification, while N06025 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is N06025 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
200
Elongation at Break, % 9.0
32
Fatigue Strength, MPa 95
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 25
76
Tensile Strength: Ultimate (UTS), MPa 250
760
Tensile Strength: Yield (Proof), MPa 120
310

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 170
1000
Melting Completion (Liquidus), °C 620
1350
Melting Onset (Solidus), °C 550
1300
Specific Heat Capacity, J/kg-K 910
480
Thermal Conductivity, W/m-K 100
11
Thermal Expansion, µm/m-K 24
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 79
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
50
Density, g/cm3 2.6
8.2
Embodied Carbon, kg CO2/kg material 9.3
8.4
Embodied Energy, MJ/kg 160
120
Embodied Water, L/kg 1180
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
190
Resilience: Unit (Modulus of Resilience), kJ/m3 120
240
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 26
26
Strength to Weight: Bending, points 33
22
Thermal Diffusivity, mm2/s 42
2.9
Thermal Shock Resistance, points 11
21

Alloy Composition

Aluminum (Al), % 91.4 to 93.4
1.8 to 2.4
Carbon (C), % 0
0.15 to 0.25
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0 to 0.1
0 to 0.1
Iron (Fe), % 0 to 0.2
8.0 to 11
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 0.15
Nickel (Ni), % 0
59.2 to 65.9
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0.1 to 0.2
Yttrium (Y), % 0
0.050 to 0.12
Zinc (Zn), % 0
0.010 to 0.1
Residuals, % 0 to 0.15
0