MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. N07752 Nickel

A535.0 aluminum belongs to the aluminum alloys classification, while N07752 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is N07752 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
190
Elongation at Break, % 9.0
22
Fatigue Strength, MPa 95
450
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 25
73
Tensile Strength: Ultimate (UTS), MPa 250
1120
Tensile Strength: Yield (Proof), MPa 120
740

Thermal Properties

Latent Heat of Fusion, J/g 390
310
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 620
1380
Melting Onset (Solidus), °C 550
1330
Specific Heat Capacity, J/kg-K 910
460
Thermal Conductivity, W/m-K 100
13
Thermal Expansion, µm/m-K 24
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 79
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
60
Density, g/cm3 2.6
8.4
Embodied Carbon, kg CO2/kg material 9.3
10
Embodied Energy, MJ/kg 160
150
Embodied Water, L/kg 1180
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
220
Resilience: Unit (Modulus of Resilience), kJ/m3 120
1450
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
23
Strength to Weight: Axial, points 26
37
Strength to Weight: Bending, points 33
29
Thermal Diffusivity, mm2/s 42
3.2
Thermal Shock Resistance, points 11
34

Alloy Composition

Aluminum (Al), % 91.4 to 93.4
0.4 to 1.0
Boron (B), % 0
0 to 0.0070
Carbon (C), % 0
0.020 to 0.060
Chromium (Cr), % 0
14.5 to 17
Cobalt (Co), % 0
0 to 0.050
Copper (Cu), % 0 to 0.1
0 to 0.5
Iron (Fe), % 0 to 0.2
5.0 to 9.0
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 1.0
Nickel (Ni), % 0
70 to 77.1
Niobium (Nb), % 0
0.7 to 1.2
Phosphorus (P), % 0
0 to 0.0080
Silicon (Si), % 0 to 0.2
0 to 0.5
Sulfur (S), % 0
0 to 0.0030
Titanium (Ti), % 0 to 0.25
2.3 to 2.8
Vanadium (V), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0 to 0.15
0