MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. N10001 Nickel

A535.0 aluminum belongs to the aluminum alloys classification, while N10001 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is N10001 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
220
Elongation at Break, % 9.0
45
Fatigue Strength, MPa 95
300
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 25
84
Tensile Strength: Ultimate (UTS), MPa 250
780
Tensile Strength: Yield (Proof), MPa 120
350

Thermal Properties

Latent Heat of Fusion, J/g 390
320
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 620
1620
Melting Onset (Solidus), °C 550
1570
Specific Heat Capacity, J/kg-K 910
390
Thermal Expansion, µm/m-K 24
10

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
75
Density, g/cm3 2.6
9.2
Embodied Carbon, kg CO2/kg material 9.3
15
Embodied Energy, MJ/kg 160
200
Embodied Water, L/kg 1180
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
290
Resilience: Unit (Modulus of Resilience), kJ/m3 120
280
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 51
22
Strength to Weight: Axial, points 26
24
Strength to Weight: Bending, points 33
21
Thermal Shock Resistance, points 11
25

Alloy Composition

Aluminum (Al), % 91.4 to 93.4
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
0 to 1.0
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.2
4.0 to 6.0
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 1.0
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0
58 to 69.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.2 to 0.4
Residuals, % 0 to 0.15
0