MakeItFrom.com
Menu (ESC)

A535.0 Aluminum vs. S44635 Stainless Steel

A535.0 aluminum belongs to the aluminum alloys classification, while S44635 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is A535.0 aluminum and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 67
210
Elongation at Break, % 9.0
23
Fatigue Strength, MPa 95
390
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 25
81
Tensile Strength: Ultimate (UTS), MPa 250
710
Tensile Strength: Yield (Proof), MPa 120
580

Thermal Properties

Latent Heat of Fusion, J/g 390
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 910
470
Thermal Conductivity, W/m-K 100
16
Thermal Expansion, µm/m-K 24
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 23
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 79
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
22
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 9.3
4.4
Embodied Energy, MJ/kg 160
62
Embodied Water, L/kg 1180
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
150
Resilience: Unit (Modulus of Resilience), kJ/m3 120
810
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 26
25
Strength to Weight: Bending, points 33
23
Thermal Diffusivity, mm2/s 42
4.4
Thermal Shock Resistance, points 11
23

Alloy Composition

Aluminum (Al), % 91.4 to 93.4
0
Carbon (C), % 0
0 to 0.025
Chromium (Cr), % 0
24.5 to 26
Copper (Cu), % 0 to 0.1
0
Iron (Fe), % 0 to 0.2
61.5 to 68.5
Magnesium (Mg), % 6.5 to 7.5
0
Manganese (Mn), % 0.1 to 0.25
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 4.5
Nickel (Ni), % 0
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.2
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0.2 to 0.8
Residuals, % 0 to 0.15
0