MakeItFrom.com
Menu (ESC)

ACI-ASTM CA15M Steel vs. Grade 13 Titanium

ACI-ASTM CA15M steel belongs to the iron alloys classification, while grade 13 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA15M steel and the bottom bar is grade 13 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 20
27
Fatigue Strength, MPa 330
140
Poisson's Ratio 0.28
0.32
Reduction in Area, % 34
34
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 690
310
Tensile Strength: Yield (Proof), MPa 510
190

Thermal Properties

Latent Heat of Fusion, J/g 270
420
Maximum Temperature: Mechanical, °C 760
320
Melting Completion (Liquidus), °C 1450
1660
Melting Onset (Solidus), °C 1410
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 27
22
Thermal Expansion, µm/m-K 10
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 3.0
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5
7.2

Otherwise Unclassified Properties

Base Metal Price, % relative 7.5
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.1
32
Embodied Energy, MJ/kg 29
520
Embodied Water, L/kg 100
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
73
Resilience: Unit (Modulus of Resilience), kJ/m3 670
180
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 25
19
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 7.2
8.9
Thermal Shock Resistance, points 25
24

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 11.5 to 14
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 82.1 to 88.4
0 to 0.2
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.15 to 1.0
0
Nickel (Ni), % 0 to 1.0
0.4 to 0.6
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0
Ruthenium (Ru), % 0
0.040 to 0.060
Silicon (Si), % 0 to 0.65
0
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
98.5 to 99.56
Residuals, % 0
0 to 0.4