MakeItFrom.com
Menu (ESC)

ACI-ASTM CA28MWV Steel vs. Grade 23 Titanium

ACI-ASTM CA28MWV steel belongs to the iron alloys classification, while grade 23 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ACI-ASTM CA28MWV steel and the bottom bar is grade 23 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 11
6.7 to 11
Fatigue Strength, MPa 470
470 to 500
Poisson's Ratio 0.28
0.32
Reduction in Area, % 27
30
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 1080
930 to 940
Tensile Strength: Yield (Proof), MPa 870
850 to 870

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 740
340
Melting Completion (Liquidus), °C 1470
1610
Melting Onset (Solidus), °C 1430
1560
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 25
7.1
Thermal Expansion, µm/m-K 10
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.6
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 5.3
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 11
36
Density, g/cm3 7.9
4.4
Embodied Carbon, kg CO2/kg material 3.1
38
Embodied Energy, MJ/kg 44
610
Embodied Water, L/kg 100
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
61 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 1920
3430 to 3560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 38
58 to 59
Strength to Weight: Bending, points 30
48
Thermal Diffusivity, mm2/s 6.6
2.9
Thermal Shock Resistance, points 40
67 to 68

Alloy Composition

Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0.2 to 0.28
0 to 0.080
Chromium (Cr), % 11 to 12.5
0
Hydrogen (H), % 0
0 to 0.013
Iron (Fe), % 81.4 to 85.8
0 to 0.25
Manganese (Mn), % 0.5 to 1.0
0
Molybdenum (Mo), % 0.9 to 1.3
0
Nickel (Ni), % 0.5 to 1.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.13
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
88.1 to 91
Tungsten (W), % 0.9 to 1.3
0
Vanadium (V), % 0.2 to 0.3
3.5 to 4.5
Residuals, % 0
0 to 0.4